
MINERAÇÃO MASSIVA DE

DADOS
Parte 12 – Spark Distributed Processing

Marcial Porto Fernández

marcial.fernandez@uece.br

Programa Pós-graduação em Ciência da Computação (PPGCC)

Universidade Estadual do Ceará (UECE)

Laboratório de Sistemas Digitais (LASID)

Sumário

• Recap Map Reduce

• Spark Distributed Architecture

• Anonymous Function

• Spark Operations

• Spark Programming Tips

• Example: Distributed Pi and Distributed Word Count

2

Sumário

• Recap Map Reduce

• Spark Distributed Architecture

• Anonymous Function

• Spark Operations

• Spark Programming Tips

• Example: Distributed Pi and Distributed Word Count

3

Rex 4 duce
x 5

x 3

An algorithm is applied to all
the elements of the same
category

The MapReduce Paradigm

• Parallel processing paradigm

• Programmer is unaware of parallelism

• Programs are structured into a two-phase execution

Map

Data elements are
classified into
categories

4

Sumário

• Recap Map Reduce

• Spark Distributed Architecture

• Anonymous Function

• Spark Operations

• Spark Programming Tips

• Example: Distributed Pi and Distributed Word Count

5

• A Spark application is initiated from a driver program

• Run in Container (e.g. Docker) or JVM

• Spark execution modes:

• Standalone

• Use Mesos as the cluster manager

• Use YARN as the cluster manager

• Use Kubernetes as the cluster manager

Spark Application Architecture

6

Spark Software Components

• Spark runs as a library in your

program (one instance per app)

• Runs tasks locally or on a

cluster

• Standalone deploy, cluster, Mesos

or YARN

• Accesses storage via

InputFormat API

• Can use HBase, HDFS, S3, …

Your application

SparkContext

Local
threads

Cluster
manager

Worker Worker

HDFS or other storage

Spark
executor

Spark
executor

7

Spark Distributed Architecture

• Data partition

• Transformation

Dataframe to RDD

• RDD is basically a

Dataframe without

collumn label

8

Spark Distributed Architecture

9

Apache Mesos

10

Mesos Dashboard

11

Mesos Dashboard

12

Mesos Dashboard

13

Mesos Dashboard

14

Spark Dashboard

15

Spark Distributed Modes

• Two containers model: Java or Docker

• Spark code is similar to both

• Java

• Create a JVM in each node

• Run only Java code (no Python libs)

• Spark binary should be available in filesystem

• Docker

• Create a Docker instance in each node

• Can include other libs in Dockerfile (i.e., Python libs)

• DockerHub: lasid/spark-worker

• Java is faster and Docker is more flexible.

16

Sumário

• Recap Map Reduce

• Spark Distributed Architecture

• Anonymous Function

• Spark Operations

• Spark Programming Tips

• Example: Distributed Pi and Distributed Word Count

17

Anonymous function

• Anonymous functions originate in the work of Alonzo

Church in his invention of the lambda calculus in 1936.

• Also known as function literal, lambda abstraction, or lambda

expression.

• In several programming languages, anonymous functions

are introduced using the keyword lambda.

• Anonymous functions are often referred to as lambdas or

lambda abstractions.

• The first programming language where anonymous

functions have been used was Lisp in 1958.

18

Lambda Architecture

• Nathan Marz came up with the term Lambda Architecture

for a generic, scalable and fault-tolerant data processing

architecture.

• It is data-processing architecture designed to handle

massive quantities of data by taking advantage of both

batch and stream processing methods.

• Like Python def, the lambda creates a function to be called

later.

• But it returns the function instead of assigning it to a name.

• In practice, they are used as a way to inline a function

definition, or to set a code execution.

19

Lambda Python Examples

• lambda arg1, arg2, ...argN : expression using arguments

• def func(arg1, arg2, ...argN) :

value = expression using arguments

return value

20

Spark Lambda Python Examples

• Read the lines in a string
• ['word1 word2 word3','word4 word3 word2']

• Split all words in FlatMap
• ['word1','word2','word3','word4','word3','word2'].

• Identify all word occurrence in Map
• [('word1',1),('word2',1),('word3',1),('word4',1),('word3',1),('word2',1)].

• Count the number of occurences in ReduceByKey
• [('word1',1),('word2',2),('word3',2),('word4',1)].

21

Sumário

• Recap Map Reduce

• Spark Distributed Architecture

• Anonymous Function

• Spark Operations

• Spark Programming Tips

• Example: Distributed Pi and Distributed Word Count

22

Spark Operations

• Spark support two types of operations over RDD:

• Transformations are operations that are performed on an RDD
and which yield a new RDD containing the result.
• Ex: map, filter, join, union, and so on

• Actions are operations that return a value after running a
computation on an RDD.
• Ex: reduce, count, first, and so on

• Transformations are “lazy”, meaning that they do not compute
their results right away.
• Instead, they just “remember” the operation to be performed to the dataset

(e.g., file) to which the operation is to be performed.

• The transformations are only actually computed when an action
is called and the result is returned to the driver program.

• This design enables Spark to run more efficiently.
• If a big file was transformed in various ways and passed to first action,

Spark would only process and return the result once, rather than the entire
file.

23

Spark Operations

• Now, to intuitively get the difference between these two,

consider some of the most common transformations are:

• map(), filter(), flatMap(), sample(), randomSplit(), coalesce() and

repartition()

• Some of the most common actions are:

• reduce(), collect(), first(), take(), count() and saveAsHadoopFile().

• Transformations are lazy operations on a RDD that

create one or many new RDDs.

• Actions produce non-RDD values, they return a result set,

a number, a file, …

24

Main Spark Transformations

• map(func): Return a new distributed dataset formed by passing

each element of the source through a function func.

• flatMap(func): Similar to map(func) but func return a sequence

rather than a single item (“flattening”).

25

Main Spark Transformations

• filter(func): Return a new dataset formed by selecting those

elements of the source on which func returns true

• union(otherDataset): Return a new dataset that contains the

union of the elements in the source dataset and the argument.

• intersection(otherDataset): Return a new RDD that contains the

intersection of elements in the source dataset and the

argument.

• distinct([numTasks])): Return a new dataset that contains the

distinct elements of the source dataset

• join(otherDataset, [numTasks]): When called on datasets of type

(K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all

pairs of elements for each key.

26

Main Spark Actions

• reduce(func): Aggregate the elements of the dataset

using a function func (which takes two arguments and

returns one). The function should be commutative and

associative so that it can be computed correctly in

parallel.

• collect(): Return all the elements of the dataset as an

array at the driver program. This is usually useful after

a filter or other operation that returns a sufficiently

small subset of the data.

• count(): Return the number of elements in the dataset.

Remember: Actions cause calculations to be performed;
transformations just set things up (lazy evaluation)

27

Spark Operations

• Transformations (create a new RDD)

map(func) Return a new distributed dataset formed by passing each element

of the source through a function func.

filter(func) Return a new dataset formed by selecting those elements of the

source on which funcreturns true.

flatMap(func) Similar to map, but each input item can be mapped to 0 or more

output items (so func should return a Seq rather than a single

item).

mapPartitions(func) Similar to map, but runs separately on each partition (block) of the

RDD, so func must be of type Iterator<T> => Iterator<U> when

running on an RDD of type T.

mapPartitionsWithIndex(func) Similar to mapPartitions, but also provides func with an integer

value representing the index of the partition, so func must be of

type (Int, Iterator<T>) => Iterator<U> when running on an RDD of

type T.

28

Spark Operations

• Transformations (create a new RDD)

sample(withReplacement, fraction, seed) Sample a fraction fraction of the data, with or without

replacement, using a given random number generator seed.

union(otherDataset) Return a new dataset that contains the union of the elements

in the source dataset and the argument.

intersection(otherDataset) Return a new RDD that contains the intersection of elements

in the source dataset and the argument.

distinct([numPartitions])) Return a new dataset that contains the distinct elements of

the source dataset.

groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of

(K, Iterable<V>) pairs.

Note: If you are grouping in order to perform an aggregation

(such as a sum or average) over each key,

using reduceByKey or aggregateByKey will yield much better

performance.

Note: By default, the level of parallelism in the output

depends on the number of partitions of the parent RDD. You

can pass an optional numPartitions argument to set a

different number of tasks.

29

Spark Operations

• Transformations (create a new RDD)
reduceByKey(func, [numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of

(K, V) pairs where the values for each key are aggregated

using the given reduce function func, which must be of type

(V,V) => V. Like in groupByKey, the number of reduce tasks is

configurable through an optional second argument.

aggregateByKey(zeroValue)(seqO

p, combOp, [numPartitions])

When called on a dataset of (K, V) pairs, returns a dataset of

(K, U) pairs where the values for each key are aggregated

using the given combine functions and a neutral "zero" value.

Allows an aggregated value type that is different than the input

value type, while avoiding unnecessary allocations. Like

in groupByKey, the number of reduce tasks is configurable

through an optional second argument.

sortByKey([ascending],

[numPartitions])

When called on a dataset of (K, V) pairs where K implements

Ordered, returns a dataset of (K, V) pairs sorted by keys in

ascending or descending order, as specified in the

boolean ascending argument.

join(otherDataset, [numPartitions]) When called on datasets of type (K, V) and (K, W), returns a

dataset of (K, (V, W)) pairs with all pairs of elements for each

key. Outer joins are supported

through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

30

Spark Operations

• Transformations (create a new RDD)

cogroup(otherDataset,

[numPartitions])

When called on datasets of type (K, V) and (K, W), returns a dataset of

(K, (Iterable<V>, Iterable<W>)) tuples. This operation is also

called groupWith.

cartesian(otherDataset) When called on datasets of types T and U, returns a dataset of (T, U)

pairs (all pairs of elements).

pipe(command, [envVars]) Pipe each partition of the RDD through a shell command, e.g. a Perl or

bash script. RDD elements are written to the process's stdin and lines

output to its stdout are returned as an RDD of strings.

coalesce(numPartitions) Decrease the number of partitions in the RDD to numPartitions. Useful

for running operations more efficiently after filtering down a large

dataset.

repartition(numPartitions) Reshuffle the data in the RDD randomly to create either more or fewer

partitions and balance it across them. This always shuffles all data over

the network.

repartitionAndSortWithinPar

titions(partitioner)

Repartition the RDD according to the given partitioner and, within each

resulting partition, sort records by their keys. This is more efficient than

calling repartition and then sorting within each partition because it can

push the sorting down into the shuffle machinery.

31

Spark Operations

• Actions (return results to driver program)

reduce(func) Aggregate the elements of the dataset using a function func (which

takes two arguments and returns one). The function should be

commutative and associative so that it can be computed correctly in

parallel.

collect() Return all the elements of the dataset as an array at the driver program.

This is usually useful after a filter or other operation that returns a

sufficiently small subset of the data.

count() Return the number of elements in the dataset.

first() Return the first element of the dataset (similar to take(1)).

take(n) Return an array with the first n elements of the dataset.

32

Spark Operations

• Actions (return results to driver program)

takeSample(withReplacement, num,

[seed])

Return an array with a random sample of num elements of

the dataset, with or without replacement, optionally pre-

specifying a random number generator seed.

takeOrdered(n, [ordering]) Return the first n elements of the RDD using either their

natural order or a custom comparator.

saveAsTextFile(path) Write the elements of the dataset as a text file (or set of text

files) in a given directory in the local filesystem, HDFS or

any other Hadoop-supported file system. Spark will call

toString on each element to convert it to a line of text in the

file.

saveAsSequenceFile(path)

(Java and Scala)

Write the elements of the dataset as a Hadoop

SequenceFile in a given path in the local filesystem, HDFS

or any other Hadoop-supported file system. This is available

on RDDs of key-value pairs that implement Hadoop's

Writable interface. In Scala, it is also available on types that

are implicitly convertible to Writable (Spark includes

conversions for basic types like Int, Double, String, etc).

33

Spark Operations

• Actions (return results to driver program)

saveAsObjectFile(path)

(Java and Scala)

Write the elements of the dataset in a simple format using

Java serialization, which can then be loaded

usingSparkContext.objectFile().

countByKey() Only available on RDDs of type (K, V). Returns a

hashmap of (K, Int) pairs with the count of each key.

foreach(func) Run a function func on each element of the dataset. This

is usually done for side effects such as updating

an Accumulator or interacting with external storage

systems.

Note: modifying variables other than Accumulators

outside of the foreach() may result in undefined behavior.

34

https://spark.apache.org/docs/latest/rdd-programming-guide.html#accumulators

Sumário

• Recap Map Reduce

• Spark Distributed Architecture

• Anonymous Function

• Spark Operations

• Spark Programming Tips

• Example: Distributed Pi and Distributed Word Count

35

Create SparkContext

• Main entry point to Spark functionality

• Created for you in Spark shells as variable sc

• SparkContext is a subgroup of SparkSession.

• SparkContext is pure RDD, without labels, to be processed

in parallel.

36

Creating RDDs and Dataframes

Turn a local collection into an RDD
sc.parallelize ([1 , 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile (ƧÆÉÌÅƚÔØÔƨ)
sc.textFile (ƧÄÉÒÅÃÔÏÒÙƳǉƚÔØÔƨ)
sc.textFile (Ƨhdfs ƙƳƳÎÁÍÅÎÏÄÅƙʮʣʣʣƳÐÁÔÈƳÆÉÌÅƨ)

Convert Dataframe in RDD
sc = df.rdd

Read CSV to RDD (via Dataframe)
sc = spark.read.csv(ƧÆÉÌÅÎÁÍÅƚÃÓÖƨ). rdd

Convert RDD in Dataframe
df = rdd.toDF ()

37

Basic Transformations

nums = sc.parallelize ([1 , 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) # => { 1, 4, 9}

Keep elements passing a predicate
even = squares. filter (lambda x: x % 2 == 0) # => {4}

Map each element to zero or more others
nums.flatMap (lambda x: range(0, x)) # => {0, 0, 1,
0, 1, 2}

Range object (sequence of
numbers 0, 1, …, x-1)

38

nums = sc.parallelize ([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect () # => [1, 2, 3]

Return first K elements
nums.take (2) # => [1, 2]

Count number of elements
nums.count () # => 3

Merge elements with an associative function
nums.reduce (lambda x, y: x + y) # => 6

Write elements to a text file
nums.saveAsTextFile (Ƨhdfs :// file.txt ƨ)

Basic Actions

39

Some Key-Value Operations

pets = sc.parallelize ([(ƧÃÁÔƨ, 1), (ƧÄÏÇƨ, 1), (ƧÃÁÔƨ, 2)])

pets. groupByKey()
=> {(cat, Seq(1, 2)), (dog, Seq(1)}

pets. reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

pets. sortByKey ()
=> {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey() also automatically implements combiners on

the map side

40

visits = sc.parallelize ([(Ƨindex.html ƨ, Ƨʦƚʧƚʨƚʩƨ),
(Ƨabout.html ƨ, Ƨʨƚʩƚʪƚʫƨ),
(Ƨindex.html ƨ, Ƨʦƚʨƚʨƚʦƨ)])

pageNames= sc.parallelize ([(Ƨindex.html ƨ, Ƨ(ÏÍÅƨ), (Ƨabout.html ƨ, Ƨ!ÂÏÕÔƨ)])

visits. join (pageNames)
ʢ ƽƧindex.html ƨƗ ƽƧʦƚʧƚʨƚʩƨƗ Ƨ(ÏÍÅƨƾƾ
ʢ ƽƧindex.html ƨƗ ƽƧʦƚʨƚʨƚʦƨƗ Ƨ(ÏÍÅƨƾƾ
ʢ ƽƧabout.html ƨƗ ƽƧʨƚʩƚʪƚʫƨƗ Ƨ!ÂÏÕÔƨƾƾ

visits. cogroup (pageNames)
ʢ ƽƧindex.html ƨƗ ƽSeqƽƧʦƚʧƚʨƚʩƨƗ ƧʦƚʨƚʨƚʦƨƾƗ SeqƽƧ(ÏÍÅƨƾƾƾ
ʢ ƽƧabout.html ƨƗ ƽSeqƽƧʨƚʩƚʪƚʫƨƾƗ SeqƽƧ!ÂÏÕÔƨƾƾƾ

Multiple Datasets

41

Controlling the Level of Parallelism

• All the action operations take an optional second

parameter for number of tasks
words. reduceByKey(lambda x, y: x + y , 5)

words. groupByKey(5)

visits. join (pageViews, 5)

42

• External variables you use in a closure will automatically be

shipped to the cluster:
query = raw_input (Ƨ%ÎÔÅÒ Á ÑÕÅÒÙƙƨ)

pages. filter (lambda x: x.startswith (query)). count ()

• Some caveats:

• Each task gets a new copy (updates aren’t sent back)

• Variable must be Serializable (Java/Scala) or Pickle-able (Python)

• Don’t use fields of an outer object (ships all of it!)

Using Local Variables

43

Example: K-Means

44

Example: K-Means

45

Example: K-Means

46

Distributed Spark Keys Points

• Data should be RDD format

• Spark doesn’t need headers...

• Data should be divided in parts

• Isolate Transform function (Map) and Action functions

(Reduce)

• The parallelism is automatically (“automagically”?)

• If you use many computers, you should use a cluster

management

47

Sumário

• Recap Map Reduce

• Spark Distributed Architecture

• Anonymous Function

• Spark Operations

• Spark Programming Tips

• Example: Distributed Pi and Distributed Word Count

48

Example: Distributed Pi

• Esse exemplo mostra o cálculo do valor do número Pi

usando método Monte Carlo (não é a melhor maneira de

calcular, mas exige muito processamento...).

• O programa define o tamanho do contador (partition) e cria

vários processos com a função Map que retornam o valor

que é totalizado com a função Reduce.

• Três partes:

• Cálculo em apenas um host

• Cálculo paralelo em vários hosts com JVM

• Cálculo paralelo em vários hosts usando Docker.

• O Exemplo 6 avalia apenas o processamento (operação

matemática) e não a leitura de arquivos.

49

Example: Distributed Pi

50

Example: Distributed Pi

51

Example: Distributed Pi

52

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)
(or, 1)
(to, 2)

Example: Distributed Word Count

(1) (2) (3)

• O Exemplo 7 realiza a contagem de palavras de um texto

de forma distribuída

lines = sc.textFile (ƧÈÁÍÌÅÔƚÔØÔƨ)

counts = lines. flatMap (lambda line: line.split ()) \ (1)
. map(lambda word: (word, 1)) \ (2)
. reduceByKey(lambda x, y: x + y) (3)

53

Example: Distributed Word Count

54

Example: Serial Word Count

55

Example: Word Count Parallel JVM

56

Example Word Count Parallel Docker

57

Example: Word Count One partition

58

Example: Word Count 5 partitions

59

OBRIGADO !

marcial.fernandez@uece.br

http://marcial.larces.uece.br

